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Summary 

A new method has been developed to test the self-consistency of distance constraints derived from 
NOESY spectra. The technique is based on the premise that the further the atomic coordinates of any 
given structure vary from the 'correct' structure, the more NOE violations will occur in that structure. 
This relationship is quantified by plotting the deviation of each structure against the sum of the residual 
NOE violations. This type of plot is called a DVplot, which is generated by the following means: first 
the experimental constraints are used to generate a set of structures, then the amount of deviation and 
violation is quantified for each structure. The deviation of each structure is derived from the root-mean- 
squared deviation (rmsd) between each structure and the average structure. Violations are quantified 
for each structure using the new terms S 1, $2, and $3. These terms measure the sum of all residual NOE 
violations greater than 0.1 A., 0.2 A, and 0.3 A, respectively. DVplots are used to show that for series 
of structures calculated from a single set of NMR constraints, there is an approximate linear correlation 
between the rmsd and each of the three sums, $1, $2, and $3. Furthermore, it is proposed that the x- 
intercepts derived from the three plots of S1, $2, and $3 will converge if the NOE constraints are self- 
consistent. The new technique is applied to five different proteins using both experimental and simulated 
constraint sets. 

Introduction 

The problem treated in this paper, in theory, is simple; 
there is no reliable method for measuring the accuracy of 
structures derived from experimental N M R  data (reviewed 
by James, 1994). Our colleagues in X-ray crystallography 
have a fairly straightforward approach to this problem. 
The final proposed structure is used to calculate a theor- 
etical set of intensities, Fo. These values are then com- 
pared to the experimental intensities, Fo, using the follow- 
ing equation: 

R = ZIFr (1) 
ZFo 

where the summation is carried over all experimental data 

points. This equation measures the difference between the 
simulated and experimental results. Unfortunately, this 
approach has less utility when applied to N M R  data. In 
a typical N M R  spectrum, a large percentage of the signal 
may arise from artifacts. Examples of  such artifacts in- 
clude baseline distortions from receiver imperfections, 
residual signal from H20, partial bleaching of exchange- 
able amide protons, baseline distortions caused by diag- 
onal peaks, T 1 noise ridges, and so on. Most of  these 
problems have systematic effects on the observed inten- 
sities. For instance, baseline distortions are often strongest 
in the center of the spectrum, where they affect the meas- 
ured intensities of the C~H resonances. X-ray crystallo- 
graphy does have some similar problems with experimen- 
tal artifacts, which have been addressed by a variety of 
techniques (Blundell and Johnson, 1976). However, these 

Abbreviations: DVplots, deviation versus violation plots; NOE, a correlation between two protons observed by the nuclear Overhauser effect; r, 
correlation coefficient; rmsd, root-mean-squared deviation; S1, $2, and $3, measures of the sum of all NOE violations greater than 0.1 A, 0.2 A, 
and 0.3 A, respectively. 
The programs that have been developed for this work are available at ftp@canopus.biochem.ualberta.ca. 

0925-2738/$ 6.00 + 1.00 �9 1996 ESCOM Science Publishers B.V. 



405 

problems rarely lead to systematic distortions in a subset 
of calculated interatomic distances. 

There is another, more subtle, reason why it is difficult 
to compare experimental N M R  data with a theoretical 
data set calculated from a model structure. In X-ray 
crystallography, each experimental intensity represents the 
summation of interactions over all interatomic pairs. In 
cases where the structure of a single region of a protein 
has been misinterpreted, the errors cause an overall reduc- 
tion in the value of R. However, this effect is spread 
throughout the data set and does not cause a systematic 
distortion in a subset of  calculated intensities. In N M R  
structure analysis, each NOE peak is primarily interpreted 
as an interaction between two distinct protons. Therefore, 
errors have a very localized effect, i.e., the misassignment 
of  a single NOE will only directly affect that peak. This 
author once misinterpreted an NOE peak while solving 
the structure of  kistrin (M. Adler and G. Wagner, unpub- 
lished results). This single mistake caused a 10 ~ shift in 
the loop of the protein that contained the most critical 
residues. The proposed NOE assignment still provided a 
reasonable fit between calculated and measured NOE 
peaks. Generally, small mistakes in the interpretation of 
both the assignment and the intensity of  NOE peaks can 
cause errors that often escape detection. 

Determining the precision of N M R  structures has been 
an easier task. Most N M R  structure publications list the 
root-mean-squared deviation (rmsd) of  a set of  refined 
structures. This is a measure of the scatter in the atomic 
position between independently calculated structures. A 
test structure is first superimposed upon a reference struc- 
ture of  the macromolecule. The rmsd is then measured by 
calculating the average distance of the atoms in the test 
structure versus the corresponding atoms in the reference 
structure. However, this approach alone does not judge 
the accuracy of the N M R  data used to calculate the struc- 
tures, since it fails to detect any systematic errors in pre- 
paring the data set. 

This paper proposes a new empirical method for asses- 
sing the quality of  N M R  structures. The method is based 
on a very simple assumption. Let us suppose that there is 
a reliable reference structure that has been calculated for 
a given protein. A good choice for the reference structure 
is the average structure calculated from an ensemble of  
superimposed structures. The exact choice is not critical 
in most cases. What is important is that the reference 
structure is a reasonable model for the 'correct' structure. 
The key premise of  this paper is that the further the atom- 
ic coordinates of  any given structure vary from the refer- 
ence, the more NOE violations will occur in that struc- 
ture. Therefore, there should be a correlation between the 
deviation from the reference structure as measured by the 
rmsd and the sum of all residual NOE violations. 

This paper examines the results from different proteins 
using a new technique called deviation versus violation 

plots (DVplots). The results show that DVplots can be 
used to test the self-consistency of a constraint set. Ex- 
amples are given for five proteins using both experimental 
and simulated constraint sets. 

Methods 

Structure calculations 

All calculations were performed on an Indigo 2 extreme 
workstation (Silicon Graphics, Mountain View, CA, 
U.S.A.). Structure calculations were performed using the 
DGI I  module of INSIGHTII ,  v. 2.3.0 (Biosym Technol- 
ogies, San Diego, CA, U.S.A.). Default settings were used 
unless otherwise noted. A matrix was constructed from 
the initial upper and lower bound constraints, which was 
first smoothed with the triangle inequality. Then distance 
geometry was used to generate between 50 and 150 inde- 
pendent starting structures. The structures were subjected 
to between 10 000 and 40 000 steps of simulated annealing. 
Each step corresponded to 0.2 ps. The molecular dynam- 
ics were constrained using a residual penalty function 
(Biosym Technologies, 1993). The residual penalty func- 
tion yields a unitless number that measures the ratio of  
distances and it goes to zero when all constraints are met. 
A variable cutoff was used to test the residual penalty 
function. I f  the penalty function exceeded this amount, 
then the mirror image of the embedded structure was 
subjected to simulated annealing. I f  both structures failed 
to converge, then no further calculation was performed 
and the structure was rejected. Also, if a limited number 
(<4) of  structures clearly had the incorrect fold and had 
aberrant values of  the residual penalty function, then the 
structures were manually rejected. The number of rejected 
structures is given in Table 1. The structures that passed 
the cutoff underwent a maximum of 1000 steps of  conju- 
gate gradient minimization. 

Preparation of constraint files and structure calculations 

Table 1 lists the 12 sets of  calculations presented in this 
paper. Each set is given a code name that is used through- 
out the paper. 

Eglin C 
The constraints for eglin C (Hyberts et al., 1992) were 

taken from the diskette that accompanied the original 
publication. The first seven residues of  eglin C were re- 
moved to reduce the time needed to generate new struc- 
tures. This modification does not alter the structure, 
because there are no long-range NOEs between these first 
seven residues and the remaining 63 residues. A program 
was written to translate the remaining 1115 NOE, 16 
hydrogen bond, and 74 dihedral angle constraints into the 
I N S I G H T I I  format. There were several problems with the 
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TABLE 1 
STRUCTURES USED IN THIS WORK 

Protein Code name"  Description Number of Penalty function c Best rmsd d Figure ~ 
structures b (A) 

Eglin C egc.5 5 ,~ upper bounds 50 (0) 0.1-1.4 0.70 1 
Eglin C egc.exp Exp. f 75 (0) 0.5-1.7 0.39 2 
C-loop, TM-EGF4 tm4c.exp Exp. 100 (0) 0.03-1.0 0.57 3a 
C-loop, TM-EGF4 tm4c.120 Upper bound at 20% 100 (0) 0.1-1.2 0.46 
C-loop, TM-EGF4 tm4c. 115 Upper bound at 15% 100 (0) 0.3-2.4 0.48 
C-loop, TM-EGF4 tm4c.110 Upper bound at 10% 150 (1) 0.6-2.6 0.41 3b 
Heregulin-et hera.exp Exp. 60 (7) 0.04-0.6 0.83 4a 
Heregulin-ct hera.bad Eight randomized NOEs 50 (6) 0.4-1.5 1.07 4b 
Protein G gpro.exp Exp. 75 (0) 0.6-1.2 0.37 5a 
Protein G gpro.fix Exact distance 75 (0) 0.03-0.3 0.26 
Protein G gpro.sim Simulate exp. 75 (0) 0.03-0.3 0.26 5b 
Kistrin kis.5 5/k upper bounds 50 (2) 0.3-3.0 0.92 6 

a This code name is used throughout the paper. 
b The total number of structures calculated with a given set of constraints. The number of rejected structures is listed in parentheses. 
c The range of the residual penalty values for the structure. Rejected structures are not included. 
d The rmsd for the best 10% of the structures. In this case, the best structures are defined as having the lowest rmsd values when compared to the 

average structure. 
e Figure where the data for this structure appear. 
f The constraints are derived directly from the published experimental constraints. 

original a tom names. Stereospecific NOEs  to the side- 
chain amine protons of  asparagines and glutamines were 
lost. The program that converted the NOEs  was checked 
for accuracy. The N O E  constraints that were violated in 
at least 10% of  the final structures derived from the orig- 
inal distances were examined by hand. No  errors were 
found in these 28 constraints. 

Two sets of  N O E  constraints were used to calculate 
new structures. The first, whose code is egc.exp, contained 
a direct translation of  the original N O E  constraints. The 
second set, whose code is egc.5, retained all lower bound 
distances, but the initial target for the upper bound dis- 
tances was set to 5/~.  Hyberts et al. (1992) specified an 
additional length that was added to the upper bounds to 
compensate for inherent uncertainties with NOEs  involv- 
ing pseudoatoms, methyl groups, and aromatic ring pro- 
tons. All these adjustments were published and used with- 
out modification. Embedded structures were then sub- 
jected to 30 000 steps of  simulating annealing. All super- 
impositions o f  the structures were performed using the N, 
C a, and C atoms of  residues 8-38 and 50-70. 

C-loop of TM-EGF4 
The constraints for the 19-residue fragment of  the 

fourth EGF-like domain of  thrombomodulin (TM-EGF4),  
residues 371-389, had been generated previously by this 
author  (Adler et al., 1995). The code name of  this data 
set is tm4c.exp. Structure calculations indicated that there 
were consistent violations of  two intraresidue NOEs  be- 
tween the H N  and the HB protons of  His 384, which were 
equal in intensity. This problem may have been caused by 
conformational  mobility of  this side chain (see Discus- 
sion). The decision was made to drop these constraints 

from the data set. The remaining 210 N O E  and 8 ~ di- 
hedral angle constraints were used without modification. 
Using 20 000 steps o f  simulated annealing, 100 structures 
were generated. Superimpositions were performed using 
the N, C ~, and C atoms of  residues 372-389. 

Four other sets of  constraints were generated for this 
fragment, using a different algorithm to translate peak 
intensities into distance constraints. The initial formula 
(Adler et al., 1995) assumed that the peak height was 
accurate to within a factor of  two. Furthermore, the 
formula assumed that the peak volume was proportional  
to 1/r 5 instead of  the usual 1/r 6. This had the effect of  
lengthening the distances for the less intense NOEs. The 
net effect on the experimental data was that the target 
distances of  2.2, 2.5, 3.0, 3.5, and 4.0/~ were lengthened 
to 2.6, 3.1, 3.8, 4.6, and 5.0 /k, respectively (an upper 
limit of  5.0 ~ was used for all observed NOEs). Trail sets 
of  constraints were constructed by first calculating the 
exact distances from N O E  peak intensities, using the 
standard formula. The upper bound was then set to either 
110, 115, or 120% of  this distance. This adjustment in the 
length o f  the upper bound represents an uncertainty o f  
either 10, 15, or 20%, respectively, in calculating the dis- 
tance from the N O E  peak intensity. Lower bound con- 
straints for all data sets were set to the van der Waals 
contact radii. The data sets are named tm4c. 110, tm4c. 115, 
and tm4c.120. For the tightest set o f  constraints, 
tm4c. 110, this formula reduced the upper bound distances 
by roughly 0.4/k. Only the longest upper bound distances 
were significantly shortened in the tm4c.120 constraint 
set. Either 150 structures (for tm4c. 110) or 100 structures 
(for tm4c. l l5  and tm4c.120) were generated, using the 
same techniques as described above. 



As stated previously, the distance bounds for these 
calculations were smoothed using triangle inequality. 
Calculations were also repeated for two of the data sets, 
tm4c.exp and tm4c.120, using the additional smoothing 
provided by the tetrangle inequality. The NOE between 
Ile  379 HN and Ile  379 HB had to be eliminated from both 
data sets. The upper bound distance for this NOE was set 
to 2.6 ,~ and this constraint caused fatal errors during the 
tetrangle smoothing. The tetrangle smoothing was limited 
to the constraints between sequential residues. The em- 
bedded structures were then subjected to either 10000, 
20 000 or 40 000 rounds of simulated annealing. 

EGF domain of heregulin-~ 
Structural studies of this protein are still in progress; 

therefore, there is no published reference for the NOE 
constraints. The code name will be hera.exp. The solution 
structure of the EGF-like domain of heregulin-a has been 
published (Jacobsen et al., 1996). In our hands, the folded 
portion of this protein at pH 3.1 consists of a 49-residue 
stretch, residues 177-225, which is homologous to murine 
epidermal growth factor (EGF). There were 418 NOE, 14 
hydrogen bond, and 27 ~) dihedral angle constraints. No 
attempt was made to quantify the NOE intensities. Un- 
certainties in the prochiral assignments were handled 
using the same techniques as employed for the C-loop of 
TM-EGF4 (Adler et al., 1995). Sixty structures were 
subjected to 40 000 steps of simulated annealing. Super- 
impositions were performed using the N, C a, and C atoms 
of residues 177-199 and 207-225. The excluded residues 
all belong to the chain reversal of the B-loop at the end 
of the ]~-sheet. 

An additional NOE data set was constructed for this 
protein, which is identified by the name hera.bad. A total 
of eight NOEs were omitted from the data set because of 
uncertainties caused by chemical shift degeneracy. One 
of the protons that gave rise to a NOE could not be as- 
signed. For the data set hera.bad, the assignment was 
made by random selection between the two choices. This 
data set was taken as a realistic example of spectra that 
contain a limited number of misassigned NOEs. Out of 
the 50 structures, six failed to converge. 

Protein G 
The constraints for protein G (Gronenborn et al., 

1991) were obtained by personal communication (G.M. 
Clore and M. Whitlow). The code name will be gpro.exp. 
A C program was written to convert the format. Minor 
modifications had to be made to the constraints involving 
diastereo pairs, because DGII has less flexibility in declar- 
ing pseudoatoms than has XPLOR. Whenever a pseudo- 
atom could not be used, the nearest heavy atom was se- 
lected and an additional distance was added to the upper 
bound to compensate for the distance between the heavy 
atom and the original pseudoatom. The dihedral angle 
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constraints on the side-chain angles and ~ were also ig- 
nored. The final data set for the 56-residue protein was 
constructed from 845 NOEs, 32 hydrogen bond con- 
straints, and 54 constraints on ~ (note that redundant 
NOEs were eliminated from the data and the shorter 
distance was retained). As before, the program that con- 
verted the NOEs was checked for accuracy. The NOE 
constraints that were violated in at least 10% of the final 
structures were examined by hand. No errors were found 
in these 45 constraints. Seventy-five structures were calcu- 
lated using 20 000 steps of simulated annealing, followed 
by a maximum of 1000 steps of minimization. The N, C a, 
and C atoms of all residues were used in the superimposi- 
tions. 

Two sets of data were based on a set of ideal distan- 
ces for protein G. The best structure based on the resid- 
ual penalty function was selected from the structures cal- 
culated from the original experimental constraints. IN- 
SIGHTII was then used to list the actual distance for 
every interatomic pair present in the NOE constraint set. 
This included the HN to O and the N to O distances used 
as hydrogen bond constraints. An AWK program was 
written to convert these distances into experimental con- 
straints. The program took the ideal distance and added 
+0.4 A to get the upper and lower bound distances. All 
constraints had a minimum value for the upper and lower 
bounds of 1.8 and 2.5 A, respectively. In addition, 1.6 
was added to all NOEs that included methyl protons. 
NOEs to methylene and aromatic protons with unknown 
stereoassignments had 1.1 or 2.1 ]~, respectively, added to 
their upper bounds. The code name for this data set is 
gpro.fix. 

A second data set was generated by adding a random 
error to the initial ideal distance; the code name for this 
data set is gpro.sim. The random error was generated by 
using the Box-Muller approximation of a normal (Gaus- 
sian) deviate, taken from the Numerical Recipes (Press et 
al., 1986). A distance of 0.2 ]~ was used as a single stan- 
dard deviation. The program took the new distance and 
added +0.5 ~ to get the upper and lower bound distances. 
Seventy-five structures were calculated, using the same 
techniques as for the original protein G data set. 

Kistrin 
The original data set (Adler et al., 1991) contained 

many inconsistencies that were not detected in the orig- 
inal structure calculations using the program Dspace. 
Thus, the initial upper bound distances for all 562 NOEs 
were set to 5.0/~ and retained all the original adjustments 
for methyl, methylene and aromatic protons. Twenty-one 
constraints for ~ were also used from the original work. 
The code name for this set is kis.5. Fifty structures were 
subjected to 40 000 steps of simulated annealing. Super- 
impositions were performed with the N, C a, and C atoms 
of residues 4-45 and 55-64. 
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Fig. 1. DVplots for all structures of eglin C, data set egc.5. (a) S1 versus rmsd; (b) $2 versus rrnsd; and (c) $3 versus rmsd. Lines represent a linear 
least-squares fit for each plot. The axes of all plots, except (d), are in A. (d) Ranking of the residual penalty functions. 

Calculating the average structure 

An average structure was calculated from a subset of 
structures using the following means. The best structure 
was selected based on the value of the residual penalty 
function as measured by INSIGHTII.  Then a subset of 
all final structures was selected by setting a cutoff for the 
residual energy function. Care was taken to ensure that 
the cutoff was set low enough to exclude all structures 
that did not have the same chain trace. The subset struc- 
tures included a little more than half of the final struc- 
tures. The selected structures were then superimposed on 
the best structure, using the N, C ~, and C atoms of se- 
lected residues. A subset of residues, listed for each of the 
proteins, was excluded when the original authors indi- 
cated that parts of the structures were poorly defined. 
Coordinates of the superimposed structures were then 

arithmetically averaged. No attempt was made to correct 
the geometry of the covalent structure using restrained 
molecular dynamics. 

Deviation versus violation plots 

Deviation versus violation plots (DVplots) were devel- 
oped in order to establish a correlation between the rmsd 
and the residual NOE violations. An AWK program, 
getinserror.a, generated an INSIGHTII  macro that per- 
formed two tasks. First, it superimposed each structure 
on the average structure, using the selected backbone 
atoms listed above. This command also printed the value 
of the rmsd. Second, it listed all NOE violations that 
were greater than 0.09 ]~ and printed the size of the viol- 
ation. The output of INSIGHTII  was directed to a text 
file as the macro was running. A second AWK program, 
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dvplot.a, analyzed the text file. For each structure, it kept 
five running sums based on the size of the distance viol- 
ations. First, it subtracted 0.1 A from all the violations 
and added any residual positive distance to the variable 
S1. Then 0.2 A was subtracted from the initial distance 
violation and the positive residuals were added to $2. The 
process was repeated for distances of 0.3, 0.4, and 0.5 A. 
Once all NOEs had been examined, the program printed 
out the name of the structure, the value of the rmsd for 
the backbone atoms, the residual penalty value and the 
five running sums S1-$5. Columns were delineated by 
tabs. The results were then transferred to a Macintosh and 
analyzed using the program Cricket Graph III (Computer 
Associates International Inc., New York, NY, U.S.A.). It 
was found by experience that most structures that had the 
correct fold contained no NOE violations greater than 0.4 
A. Therefore, only the sums S 1, S2, and $3 are discussed 
in the rest of the text. 

Statistical analysis 

All algorithms for determining the linear least-squares 
fit and the standard approximation for the correlation co- 
efficient, r, were adapted from the CRC Standard Mathe- 
matical Tables and Formulae(1991). The coefficient r can 
assume values from -1 to 1. A value of 1 means that x 
and y are linearly correlated, i.e., the points give a good 
fit to a straight line with a positive slope. A value of 1 
would be obtained even if there was random error in the 
measurement of y. An r of 0 indicates that y is not a 
function of x. Negative values of r are found when the 
best fit line has a negative slope. 

Results 

Figure 1 was derived from the published NOE data set 
of eglin C (Hyberts et al., 1992). The structure calcula- 
tions have been explained in the Methods section. An 
important change was made in the constraint file, i.e., all 
the initial target distances for the upper bound were set 
at 5 A (see Methods). A suite of AWK programs was 
used to obtain the residual NOE violations for each struc- 
ture, as explained in the Methods section. These measures 
are called S1, $2, and $3. S1 is generated by subtracting 
0.1 A from all NOE violations and adding together all 
the remaining positive values. $2 and $3 are calculated 
the same way by subtracting 0.2 and 0.3 A, respectively. 
Figure l a shows S1 plotted against the rmsd, with each 
point representing a single structure. Figures lb and c 
show the corresponding plots for $2 and $3, calculated 
from the same set of structures. 

S1, $2, and $3 all measure the size of the residual 
NOE violations. They are, however, sensitive to different 
phenomena. A violation of 0.3 A or greater would indi- 
cate that a structure is incompatible with the NOE con- 

straints. This problem could arise from incorrect NOE 
assignments. Alternatively, a high value of $3 occurs 
when the structure is misfolded. This was found for sev- 
eral structures in this data set with high residual penalty 
functions (see below). S1 is a more sensitive measure of 
error than $3. It would detect problems with the interpre- 
tation of NOE peak volumes. This would lead to small 
but systematic errors in the distance bounds. Thus, there 
would be a large number of violations on the order of 0.2 
/k or less, which would increase S1 without affecting $2 
and $3. This effect was observed in data sets tm4c.ll5 
and tm4c.120 (see below). 

Inspection of Fig. 1 indicates that there is only a loose 
correlation between the rmsd and the residual NOE viol- 
ations. Indeed, the correlation coefficient r ranges from a 
low value of 0.56 for Fig. lc to a high value of 0.67 for 
Fig. la. A large part of the problem stems from the fact 
that a single number, either the rmsd, Sl, $2, or $3, is 
used to sum up the conformation of the protein. Clearly, 
a single value cannot accurately describe the conforma- 
tion of a protein and it is expected that conformational 
perturbations will have different effects on different meas- 
urements. For instance, rotation of a side chain about )~ 
may produce violations in the NOE constraints without 
affecting the rmsd value for the structure. 

The plots shown in Figs. l a -c  do have some features 
in common. Noticeably, the x-intercept of the best fit 
line for plots la -c  is 0.70+0.03 A. As explained above, 
S1, $2, and $3 are different ways of measuring the resid- 
ual NOE violations. The close agreement in the x-inter- 
cepts indicates that the data from each plot reflect the 
same basic phenomenon, i.e., the further the structure is 
from the reference structure, the greater the residual 
NOE violations. If this premise is completely correct, 
then this intercept represents the limiting accuracy of the 
data set. If the structure calculations worked 'perfectly', 
then every structure should reach the point where there 
are no residual NOE violations and the backbone of  all 
the structures would lie within 0.7 A of this average 
structure. As will be shown below, the convergence of 
the x-intercept (Fig. 1) depends on the accuracy of the 
constraint set used to calculate the structures. Further- 
more, this convergence is a sensitive test as to whether the 
data are self-consistent. 

One more point about the technique should be dis- 
cussed before moving onward. Figure ld shows a plot of 
residual penalty functions of the 50 calculated structures 
for egc.5. In this case, the values of the penalty function 
have been presorted by their numerical values. The x-axis 
represents the ranking of each value amongst the 50 struc- 
tures. The first 35 points fit on a straight line. However, 
the error rapidly rises for the last 15 structures. Examina- 
tion of six of these structures, chosen at random, revealed 
a common feature. In each structure, at least one side 
chain was misfolded and appeared on the wrong side of 
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TABLE 2 
STATISTICS FROM DVPLOTS 

Code All structures 

name  x.intercept b r c 

Best structures a 

x-intercept r 

Passed test for self-consistency ~ 
egc.5 0.70_+0.03 0.62 +0.05 0.66+0.06 0.75_+0.01 
tm4c.exp 0.66_+0.06 0.79_+0.07 0.52_+0.09 0.53_+0.10 
gpro.sim 0.30_+0.04 0.80+-0.05 0.19+0.07 0.16+0.11 

Marginal results d 

tm4c.120 0.59_+0.15 0.87_+0.04 0.37_+0.23 0.71 _+0.11 
tm4c.115 0,31_+0.33 0.90+0.02 0.19_+0.35 0.72_+0.02 
hera.exp 0,53_+0.07 0.54_+0.06 0.36_+0.23 0.37+0.08 
gpro.fix 0.21_+0.04 0.23_+0.01 0.05_+0.09 0.07_+0.01 

Failed test for self-consistency d 

egc.exp -0.14+_0.14 0.50+-0.05 -10.17_+10.06 0.13_+0.09 
tm4c.ll0 -0.59+0.66 0.86+-0.02 --4.14_+3.14 0.19_+0.04 
hera.bad 0.00+0.42 0.60+0.01 -1.19_+0.47 0.28_+0.05 
gpro.exp -0.33_+0.09 0.32_+0.02 11.62+19.94 0.00+-0.04 
kis.5 ~ 0.06_+0.41 0.91_+0.01 -22.21_+30.24 0.06+-0.05 

The best two thirds of the structures. Best is defined as having the 
lowest value of the residual penalty function. 

b Mean and standard deviation (in A) for intercepts for the best fit 
lines through S1-$3. 
Mean and standard deviation for correlation coefficients, r, 

d See text for a definition of these terms. 
e Only 27 out of the 48 structures had the correct fold and were used 

as the best structures. 

the backbone. There was a large number of NOE viola- 
tions in the region surrounding the misfolded side chain. 
Presumably, the side chain became trapped during simu- 
lated annealing. 

Plots similar to that shown in Fig. ld were made for 
the data sets presented in this paper. All of these had 
roughly the same shape: a linear increase in the residual 
penalty function for the first 70-90% of the structures, 
followed by a rapid rise. Presumably, the structures with 
the large residual penalty function failed to converge. 
Perhaps a greater commitment of both intellectual and 
computational resources would have improved the con- 
vergence. However, a simple approach was adopted. It 
was decided that a parallel analysis would be performed 
using only the best two thirds of the structures as judged 
by the residual penalty function. Thus, the results focus 
on those structures that had the correct fold. As can be 
seen in Table 2, the x-intercepts remain constant for the 
data set egc.5 when only the best structures are used in 
making the DVplots. It will be shown that this behavior 
is not found for data sets where errors have been pur- 
posely introduced. 

Figure 2 shows a second DVplot for the protein eglin C. 
The only difference between the two sets of data shown 
in Fig. 1 and in Fig. 2 is that the original upper bound 
distances were used in Fig. 2 (Hyberts et al., 1992). The 
plot in Fig. 2 indicates that above roughly 0.55 A rmsd 
there is still a weak correlation between the rmsd and the 

residual NOE violations. This correlation is mostly de- 
pendent on the structures with the largest residual penalty 
functions and may include misfolded structures. However, 
below 0.55 A most structures appear to have roughly the 
same amount of residual error. This is reflected by the 
large drop in the correlation coefficients. Table 2 lists the 
statistics for this data set. The x-intercepts for the best 
structures no longer converge to a single point. The low 
values of the correlation coefficients indicate that the x- 
intercepts may not retain any useful information. These 
results suggest that the original constraints are not self- 
consistent. 

Figure 3a shows the results obtained for the C-loop of 
the fourth EGF-like domain of thrombomodulin (C-loop 
of TM-EGF4). The NOE peak intensities were quantified 
for 179 of the 210 constraints for this 19-residue frag- 
ment. The intercept of S1 is displaced downwards by 0.1 
A from those of $2 and $3. One possible explanation for 
this result stems from the large number of violations of 
the NOE that connected Ile 379 HN to Ile 379 HB. This 
upper bound distance was set to 2.57 A and the average 
violation for this constraint was 0.12 A. These violations 
shifted the value of S1 upwards for each structure, which 
in turn shifted the x-intercept of S 1 downwards. However, 
these errors were too small to affect $2. 

A series of structure calculations was performed using 
progressively tighter upper bound constraints (see 
Methods). Internal checks, such as the intraresidue and 
sequential HN to C~H distances, were used to verify the 
accuracy of the constraints. The range of interatomic 
distances predicted for the tightest set of constraints, 
tm4c.ll0, was close to that of the expected distances 
(WLithrich, 1986). Therefore, there was little room in the 
constraints for any experimental errors. Table 3 shows 
that the process of tightening the constraints has system- 
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Fig. 2. DVplots for all structures of eglin C, experimental constraints, 
data set egc.exp. (r-I): S1; (~): $2; (&): $3. 
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Fig. 3. DVplots for the C-loop of  TM-EGF4,  showing only the best two thirds of  the structures. (1"7): S1; (~): $2; (~k): $3. (a) Experimental 
constraints, tm4c.exp; (b) overconstrained data set, tm4c.110. 

atic effects on the results. Notably, the x-intercepts of 
DVplots become steadily smaller as the constraints get 
tighter (Table 3). This shift is caused by the steady de- 
crease in the intercept of S1 (data not shown). Also, the 
convergence of the x-intercepts drops considerably. How- 
ever, the precision of the structures as measured by the 
backbone rmsd of the best structures is significantly im- 
proved for the tightest set of constraints, tm4c. 110. Visual 
inspection of the average structures indicates that system- 
atic distortions are introduced by using the tighter con- 
straints (data not shown). This trend is confirmed by a 
steady reduction in the radius of gyration. It is unlikely 
that any structural information is gained by using the 
tighter constraints. 

Tests were performed to measure how the different 
annealing protocols would affect the results from the 
DVplots. The structure calculations were repeated for the 
constraint sets tm4c.exp and tm4c.120, using tetrangle 
smoothing of the distance bounds (see Methods). A new 

set of embedded structures was derived from the modified 
distance bounds, and simulated annealing was performed 
for either 10 000, 20 000 or 40 000 iterations. The x-inter- 
cepts did converge for data set tm4c.exp using 10 000 and 
20 000 rounds (0.62+0.05 A and 0.50+0.06 A, respective- 
ly, for the best two thirds of the structures). However, the 
x-intercept did not converge when simulated annealing 
was continued for 40 000 iterations. These calculations 
produced 57 structures with no NOE violations greater 
than 0.1 A. Under these circumstances, the x-intercepts 
for $2 and $3 are not reliable. Experience has shown that 
the x-intercepts often do not converge for data sets that 
contain a large number of structures with no NOE viol- 
ations (tm4c.exp, gpro.fix, gpro.sim, and data not shown). 
However, the existence of these structures by themselves 
can be taken as sufficient proof that the NOEs are self- 
consistent. 

The x-intercepts did not converge for any of the calcu- 
lations performed with the tm4c.120 data set. However, 

TABLE 3 
E F F E C T  OF T I G H T E N E D  NOE C O N S T R A I N T S  

Code name Description a Best rmsd b x-intercept c Radius of  gyration d S1 of  average tm4c ~ 

(A) (A) (A) 

tm4c.exp Exp. 0.57 0.52 + 0.09 7.58 0.0 

tm4c. 120 UB + 20% 0.46 0.37 + 0.23 7.56 0.5 
tm4c. 115 UB + 15% 0.48 0.19 + 0.35 7.53 2.5 

tm4c. 110 UB + 10% 0.41 -4.14 _+ 3.14 7.49 6.0 

a Exp. in the first row refers to the published data  set. For the other three data sets, the upper bound (UB) was calculated directly from the peak 
intensity and then increased by the percentage shown in this column (see Methods).  

u The rmsd for the best 10% of  the structures. In this case, the best structures are defined as having the lowest values of  the rmsd when compared 
to the average structure. 

c Mean and standard deviation (in A) for S1-$3, using the best two thirds of  the structures. 
d Measured using the heavy atoms of  residues 372-389�9 
e The residual NOE violations, S1, were calculated for reference structures using the various restraint sets. The average structure calculated from 

the tm4c.exp constraint set is used as the reference. 
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values for both the x-intercepts and the correlation coeffi- 
cients did vary with the number of iterations. The results 
showed several trends. As the number of iterations in- 
creased, the mean value of the x-intercepts dropped from 
0.2 A to -0.5 ,~, the convergence of the x-intercepts fell 
from +0.4 .~ to +1.0 ,~, and the correlation coefficients 
went from a high of 0.8 to a low of 0.2. There was also 
30% reduction in the average value for the rmsds. These 
trends indicate that the structures converged on a well- 
defined fold. However, this convergence did not relieve 
the residual NOE violations. Therefore, the additional 
rounds of simulated annealing reduced the correlation 
between deviation and violation. The results from the 
DVplots consistently showed that the tm4c.120 data set 

was not self-consistent, although the quantitative results 
did vary with the number of iterations. 

The effect of misassigned NOEs can be seen in Fig. 4 
and in Table 2. Figure 4a shows the results for the orig- 
inal data set of heregulin-(z. Figure 4b shows the compar- 
able results when eight new NOEs were added to the 
original data set. All eight of these NOEs were initially 
omitted due to problems with overlapping resonances. In 
the second data set, the assignments were made by ran- 
dom selection between two possible assignments. As is 
shown in Table 2, the correlation coefficients for both 
sets of data are still fairly high. However, the x-intercepts 
no longer converge to a positive number in the second 
data set. 
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Fig. 5. DVplots for protein G, showing only the best two thirds of the structures. (13): S1; (~): $2; (&): $3. (a) Experimental constraints, gpro.exp; 
(b) data set with simulated experimental distances, gpro.sim. 



Figure 5a shows the DVplot obtained for protein G 
based on the published constraint set (Gronenborn et al., 
1991). The data were analyzed as previously described. As 
shown in Fig. 5a, the x-intercepts fail to converge and the 
value of the correlation coefficient (Table 2) has dropped 
compared to the egc.5 data set. 

The calculated structure for protein G was used to 
generate an ideal set of NOE constraints for the protein 
(gpro.fix). The original NOE constraints were used as the 
basis of the new data set. The pairs of atoms used to 
define each NOE remained the same. However, the initial 
target distances were obtained by measuring the inter- 
atomic distances directly from the best calculated structure 
of protein G, using the original constraints (gpro.exp). 
Upper and lower bounds were then constructed by adding 
_+0.4 A to represent the experimental uncertainty. As can 
be seen in Fig. 5b and in Table 2, the x-intercept still 
converges, 0.05 _+ 0.09 A. However, the average value of 
the x-intercepts is unreasonably low and the values of the 
correlation coefficients are close to zero. This suggests 
that the method may be less accurate for high-resolution 
structures. 

Roughly 20% of the structures in the data set gpro.fix 
have no NOE distance violations greater than 0.1 ,/k; 
therefore, the S1 values of these structures equal zero. 
Somewhat surprisingly, the rmsd values for these struc- 
tures range from 0.2 to 0.5 A. One reason for the low 
value of the correlation coefficients for this data set is 
that there are a large number of points along the baseline. 
These results are similar to those described for tm4c.exp 
when 40 000 iterations of simulated annealing were em- 
ployed. 

A second, more realistic, data set was constructed 
using the same initial target distances, gpro.sim. In this 
case, each initial distance was modified by adding a ran- 
dom distance (see Methods). The results presented in 
Table 2 indicate that the x-intercepts converge with rea- 
sonable accuracy to 0.19 + 0.07 .~. However, the best fit 
line for $3 gave lower values for both the intercept and 
the correlation coefficient. Again, these problems stem 
from the large number of points along the baseline. 

The final data set is based upon the NOEs derived for 
the protein kistrin (Adler et al., 1991). The calculation 
was performed by setting all initial upper bound distances 
to 5.0/~. Figure 6 shows the results for 68 structures. As 
with the data shown for eglin C in Fig. 2, there is correla- 
tion between the rmsd and the NOE violations for struc- 
tures further from the average structure than a given 
distance (1.7 A). In this case, the structures that lie out- 
side the 1.7 A cutoff no longer have the same global fold. 
Structures within this 1.7 A envelope show no correlation 
between error and rmsd (Table 2). The data indicate that 
the NOE constraints were not self-consistent. Presumably, 
this problem arose due to mistakes in the assignments of 
the NOEs. 
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Fig. 6. DVplots for all structures of kistrin, data set kis.5. (n): S1; 
(~): $2; (A): $3. 

The data sets can be roughly broken up into three 
main groups. The data sets are distinguished by the con- 
vergence of the x-intercepts for the best two thirds of the 
structures; see Table 2, column 4. The first group included 
egc.5, tm4c.exp, and gpro.sim. The x-intercepts all con- 
verge within +0.1 A. The x-intercepts themselves are posi- 
tive numbers that could reasonably represent the limiting 
accuracy of the data sets. The x-intercepts also remain 
fairly constant when either the entire data set, or just 
the best structures, are examined. The second group in- 
cludes tm4c. 120, tm4c. 115, hera.exp, and gpro.fix. There 
is a poor convergence of the intercepts, and the mean 
values of the intercepts are lower. With the exception of 
gpro.fix, the results indicate that there were minor incon- 
sistencies in the data, on the order of 0.3 A or less. The 
third group of structures includes five data sets (Table 2). 
The best structures no longer show a strong correlation 
between deviations and violations. 

Technical notes During the development of this tech- 
nique, several modifications were tried in an effort to im- 
prove the results. These modifications generally had little 
effect on those data sets where the results were straight- 
forward. For example, the sets exp.5 and tm4c.exp always 
passed the test for self-consistency; kis.5 and tm4c.l l0 
always failed. However, the values obtained from the 
DVplots for some data sets would change significantly 
with small variations in the method. In particular, the re- 
sults from the simulated data sets, gpro.fix and gpro.sim, 
were dependent on the exact choice of parameters. 

The most useful results were obtained by analyzing 
only the best two thirds of the structure. If the misfolded 
structures were included in the analysis, then there was a 
strong correlation between deviation and violation. This 
can be seen from the high values of the correlation coeffi- 
cient obtained when all the structures were included in the 
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analysis (Table 2, column 3). However, these results tell 
more about the problems with the structure calculations 
than with the NOE constraints. 

The calculations always produced structures that failed 
to converge. This was true even in a test run with the 
data set tm4c.exp, where tetrangle smoothing was applied 
and the number of rounds of simulated annealing was 
doubled to 40 000 (data not shown). The nonconverged 
structures would have aberrant values of the residual 
penalty function, rmsd, or NOE violations, but not neces- 
sarily all three. Therefore, the DVplots were sensitive to 
the means of selecting the best two thirds of the struc- 
tures. The results presented in Table 2, columns 4 and 5, 
were measured using the residual penalty function as the 
criterion for selecting the best structures. The DVplots 
were also calculated using the rmsd to select the best 
structures. The two data sets with simulated NOEs, 
gpro.fix and gpro.sim, behaved differently, depending on 
the selection criterion. The x-intercepts for gpro.fix con- 
verged to 0.22 + 0.05 /~ if the best structures were sel- 
ected by the rmsds, but failed to converge if the residual 
penalty function was used (Table 2). The results from 
gpro.sim showed the opposite behavior based on the 
selection criterion. Experience has shown that a few struc- 
tures with a large number of NOE violations could drasti- 
cally alter the direction of the best fit lines through the 
data points. The x-intercepts would converge for these 
data sets, but the convergence would disappear when the 
structures with large NOE violations were omitted. There- 
fore, the plots shown in the figures became an integral 
part of the analysis. Only visual inspection could confirm 
if the convergence of the x-intercepts represented legit- 
imate trends. 

One question raised during the development of  this 
technique was which structure should be selected as the 
reference structure for measuring the rmsd. The results 
presented here use the average as a reference. However, 
the average structure is a mathematical construct, and 
there are significant distortions in the covalent geometry. 
A structure derived from the experimental constraints 
would avoid these problems. To test which structure 
makes a better reference, the analysis of  the deviations 
versus the violations was repeated for the following data 
sets: egc.5, tm4c.exp, tm4c.ll5,  hera.exp, gpro.sim, and 
gpro.fix. In each case, four different structures were used 
as a reference for measuring the rmsds. A structure was 
considered to be a suitable reference if the x-intercepts 
converged for S1, $2, and $3 using only the best two 
thirds of the structures. The data for the reference struc- 
ture were not used in the analysis, since its rmsd with 
itself is 0 by definition. For egc.5 and tm4c.exp, the re- 
suits were fairly insensitive to the choice of reference struc- 
ture, as long as the reference structure had the correct 
fold. The second group of structures, tm4c. 115, hera.exp, 
and gpro.sim, gave roughly the same results when the 

best structure was used as the reference or when the refer- 
ence structure had a small number of violations that were 
less than 0.2/~. However, the results degraded when the 
reference structure had NOE violations greater than 0.3 
•. The final data set, gpro.fix, proved to be very sensitive 
to the choice of reference. It gave significantly different 
results, even when the best structure was used. The results 
indicate that the best structure can act as a suitable refer- 
ence for the rmsd. However, the average structure seems 
to be slightly more reliable. (Note that using a real struc- 
ture as the reference can also affect the selection of the 
best two thirds of the structures. Poor results were ob- 
tained if a real structure was used as the reference and the 
best two thirds of the structures were selected by the size 
of the rmsd.) 

Finally, new measures of both deviation and violation 
were tested. It was hoped that better measures of these 
quantities would demonstrate a closer correlation between 
the two. In one attempt, the square of the residual NOE 
violations beyond a certain cutoff was used instead of S1, 
$2, and $3. It was felt that the square of the distance 
might better reflect the energy terms used for these con- 
straints during simulated annealing. For example, if there 
was an NOE violation of 0.25 A, it then would add 0.15 

to the value of S1. The same violation would add 
0.0225 ,~2 to the corresponding term $21. However, there 
was no consistent improvement in the correlation coeffi- 
cients (data not shown) and the technique was not pur- 
sued further. 

Another approach used a new measure of the rmsd. 
The atoms specified in the NOE constraint file became the 
reference points for measuring the rmsd. The weight of  
each atom was proportional to the number of  times each 
atom appeared in the NOE constraint file. This measure 
was called NOE weighted root-mean-squared deviation 
(nwrmsd). One advantage of this approach is that the 
nwrmsd is sensitive to the position of the side chains. The 
technique also automatically increases the weight for 
atoms in the best determined parts of  the structure. 

There were, however, problems with this method. First, 
there was no reliable way to include information from the 
angular constraints that were derived from the coupling 
constants. More importantly, not all the NOEs were of  
equal importance. Intraresidue and sequential NOEs often 
contain less structural information than long-range 
NOEs. A crude filter was used to eliminate the short- 
range NOEs from the determination of the weight of each 
atom. A more precise measurement of the importance of 
each NOE might have improved the results. 

Using the nwrmsd, there was a noticeable improvement 
in convergence of the x-intercepts for the data sets based 
on simulated NOEs, gpro.fix and gpro.sim (data not 
shown). However, there was no substantial improvement 
in the values of the correlation coefficients for most of  
the data sets. 



415 

The method presented in this paper was selected, at 
least partially, for its simplicity. More complicated ap- 
proaches failed to deliver significant improvements. The 
reader, however, is encouraged to explore new techniques 
to find the one that works best for him or her. 

Discussion and Conclusions 

In theory, NOEs act as guides that push a structure 
towards the correct fold. The reverse side of this proposi- 
tion states that the NOE constraints should also act as 
faithful reporters that will post warnings if the structure 
strays from the fold. The method presented here is based 
on the second premise. The empirical results show that 
this premise is at least qualitatively true. It has been more 
difficult to establish a quantitative relationship for some 
of the examples. 

The convergence of the x-intercepts is a fairly sensitive 
test for self-consistency. Experience has shown that the 
most reliable results are obtained if the intercepts are 
measured using only the best two thirds of the structures. 
In this author's opinion, a constraint set is self-consistent 
if the average value of the x-intercept for S1-$3 is a rea- 
sonable positive number with a standard deviation of less 
than 0.1 A. The results shown in Table 2, column 5, 
correlate well with the preconceived bias that this author 
got from examining residual NOE violations. 

The technique is also fairly easy to use and it does not 
require any extensive new calculations. For a given set of 
structures, the user must determine the average structure 
and construct a list of NOE violations. These steps are 
fairly routine for most investigators. What is proposed 
here is a new way to compile the information. 

Potential problems 
This technique measures the self-consistency of a data 

set, not its accuracy. It is possible to make errors in the 
constraints that will only cause minimal perturbations to 
the structure. For instance, the published structures of 
both eglin C (Hyberts et al., 1992) and protein G (Gro- 
nenborn et al., 1991) closely resemble X-ray structures of 
the same proteins, even though the results presented here 
indicate that the data sets are not self-consistent. How- 
ever, the errors in the distance constraints may have 
caused subtle distortions in the structure. 

The assumption of a single static conformation, by 
itself, can generate inconsistencies in the data. It was 
shown that NOE violations in tendamistat resulted 
from multiple conformations of  the side chain of Tyr is 
(Torda et al., 1990). The calculation presented here 
could be performed by summing the violations from the 
time-average distance constraints as used by Torda et 
al. (1990). This should relieve NOE violations that arise 
from multiple conformations. However, this author does 
not have the appropriate software to perform this test. 

Using the methods presented here, the technique would 
detect inconsistencies in the initial distance constraints, 
even if the errors resulted from conformational flexibility. 
However, this may still present useful information to 
investigators. 

It is hard to judge whether the utility of DVplots will 
extend to N M R  structures that are derived from other 
refinement protocols. Currently, D G I I  is the only process- 
ing package available in this laboratory. However, the 
relevant features in DGI I  are shared by many algorithms. 
First, an initial set of coordinates is generated by some 
form of randomization. Restrained molecular dynamics 
are then used to search the conformational space. This is 
usually combined with a simulated annealing protocol. As 
in most packages, a minimum temperature is maintained 
to ensure that the structures can hop between local mini- 
ma. Finally, the simulated annealing is stopped and the 
energy of the structure is reduced through minimization. 
The structures that retain a large number of NOE viol- 
ations are presumably trapped in local minima. To a cer- 
tain extent, this technique does depend on the information 
provided by these higher energy structures, which have 
the correct fold but still retain some NOE violations. 
Therefore, it is difficult to judge the effects of different 
annealing protocols on the results. The limited results 
presented here using different DGI I  protocols indicate 
that quantitative results may vary, but the qualitative 
results remain the same. 

Empirically, the technique is less reliable for cases 
where there are a large number of  structures with no 
NOE violations. In these cases the x-intercepts for $2 and 
$3 can be very sensitive to a small number of  outlying 
points. Simple inspection of the residual NOE violations 
provides more accurate information for these examples 
than the DVplots. 

It is noteworthy that other tests for accuracy have not 
reached the same conclusions with the same data sets. 
Briinger and co-workers (1993) have developed a tech- 
nique based on randomly deleting approximately 10% of 
the data set and then recalculating the structure with the 
reduced data set. This technique was originally adapted 
from X-ray crystallography (Brtinger, 1992) and was used 
to analyze the constraint set for protein G. A detailed 
analysis of this technique lies beyond the scope of this 
paper. The work presented here suggests that there may 
be significant problems with the original data, which 
escaped detection by Brtinger and co-workers (1993). 
Perhaps the discrepancies arise because the different tech- 
niques are sensitive to different phenomena. 

Finally, it should be noted that the technique does 
not establish any relationship between the NOE con- 
straints and the experimental data. A true test for accu- 
racy must include a comparison between the calculated 
and predicted spectra. This task lies beyond the scope of 
this paper. 
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